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Abstract

This paper draws implications for technology policy from evidence on the size distribution of returns from eight sets of
data on inventions and innovations attributable to private sector firms and universities. The distributions are all highly skew;
the top 10% of sample members captured from 48 to 93 percent of total sample returns. It follows that programs seeking to
advance technology should not be judged negatively if they lead to numerous economic failures; rather, emphasis should be
placed on the relatively few big successes. To achieve noteworthy success with appreciable confidence, a sizeable array of
projects must often be supported. The outcome distributions are sufficiently skewed that, even with large numbers of
projects, it is not possible to diversify away substantial residual variability through portfolio strategies. q 2000 Elsevier
Science B.V. All rights reserved.
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During the past several years the authors have
been compiling data on the size distribution of finan-
cial returns within samples of significant technologi-
cal innovations. Our uniform finding is that the
returns are skew-distributed. Most innovations yield
modest returns, but the size distribution has a long
thin tail encompassing a relatively few innovations
with particularly high returns. In this paper, we
review earlier research, summarize our new evi-
dence, and suggest implications for technology pol-
icy.

1. Prior research

Until recently there has been relatively little sys-
tematic empirical research on the statistical distribu-

) Corresponding author.

tion properties of the returns from invention and
innovation. Drawing upon a small sample survey of

Ž . Ž .US patents, co-author Scherer 1965 p. 1098 dis-
covered a distribution of estimated profits from
patented inventions so skew that ‘‘patent statistics
are likely to measure run-of-the-mill industrial inven-
tive output much more accurately than they reflect
the occasional strategic inventions which open up
new markets and new technologies. The latter must
probably remain the domain of economic historians.’’
A second line of investigation differentiated the value
of patents by the time when their holders chose not
to pay the annual renewal fees imposed in some
nations. The pioneering article in this tradition, over-
looked by subsequent investigators, was by Dernburg

Ž .and Gharrity 1961–1962 . Leading examples of later
investigations using more powerful econometric

Ž .techniques include Pakes and Schankerman 1984 ,
Ž . Ž .Pakes 1986 , Schankerman and Pakes 1986 , and
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Ž .Lanjou et al. 1996 . These studies confirmed that
the size distribution of patent values is indeed quite
skew, most likely conforming either to a log normal
or Paretian distribution law. A third line of research

Ž .by Grabowski and Vernon 1990; 1994 used the
particularly rich data available on sales of individual
ethical drugs throughout the world to estimate the

Ž .distribution of profits or more exactly, quasi-rents
attained by samples of new drugs approved by the

Ž .US Food and Drug Administration FDA . Again, a
skew distribution was found, leading inter alia to the
conclusion that heavy-handed price controls could
jeopardize the continued vitality of new drug discov-

Žery and testing efforts see e.g., Grabowski and
.Vernon, 1996; Scherer, 1996 .

2. The new evidence

Altogether, we have assembled eight data sets,
seven of which are new to the literature. Table 1
describes the samples and provides a simple indica-
tor of distribution skewness — the fraction of total
sample profits, royalties, or stock market value con-
tributed by the 10% of the sample members realizing
the highest absolute or relative rewards.

In the most ambitious of our efforts, we collected
survey and interview evidence on 772 German- and

Table 1
Proportion of innovation samples’ total value realized by the most
valuable 10% of innovations

Data set Number of Percent of
observations value in top 10%

German patents 772 84
US patents 222 81–85
Harvard patents 118 84
Six university patents

1991 royalties 350 93
1992 royalties 408 92
1993 royalties 466 91.5
1994 royalties 411 92

Venture Economics startups 383 62
Horseley–Keogh startups 670 59
Initial public stock offerings 110 62
Ž .IPOs — 1995 stock value
Grabowski–Vernon

1970s drugs 98 55
1980s drugs 66 48

Fig. 1. Distribution of German patent values.

222 US-origin inventions, on all of which German
patent applications were filed in 1977, leading to
issued German patents considered sufficiently valu-
able by their holders to warrant paying annual re-
newal fees totalling DM 16,075 until their expiration
at full term in 1995. These are called the ‘‘German
patents’’ and ‘‘US patents’’ in Table 1. 1 Fig. 1
shows the distribution of summed German patent
values by value class intervals, with the number of
patents in each value category given in parentheses
above the bars. Fifty-four percent of the value is
concentrated in the five inventions with values of
DM 50 million or more.

Our first-stage patent survey methodology asked
company respondents to answer a single counter-
factual question, phrased as follows in the US sur-
vey.

If in 1980 you knew what you now know about
the profit history of the invention abstracted here,
what is the smallest amount for which you would
have been willing to sell this patent to an indepen-
dent third party, assuming that you had a bona
fide offer to purchase and that the buyer would
subsequently exercise its full patent rights?

In the first-stage survey, respondents were asked to
place each sample patent in one of five value cate-

1 Ž .A detailed analysis is found in Harhoff et al. 1997 . The
monetary patent value estimates are linked to subsequent patent

Ž .citations in Harhoff et al. 1999 .
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gories ranging from less than DM 40,000 to more
than DM 5 million. Fifty-six on-site interviews were
held with companies reporting patents valued at more
than DM 5 million, making it possible to elicit more
detailed discounted profitability and invention value
estimates. Because selling full rights meant that the
patent holder could be enjoined from using its inven-
tion or forced to pay royalties reflecting the inven-
tion’s value, the survey responses elicited private

Ž .value estimates grouped in value class intervals
corresponding most closely to the discounted present
value of profits that would be foregone by not
having the invention and its accompanying patent
protection. As such, the estimates are roughly two
orders of magnitude higher than those obtained in
statistical studies of patent renewal, which implicitly
assess only the value of patent protection, given
disclosure and non-patent barriers to imitation, not
the value of the invention per se, and which estimate
the value of the presumptively most valuable full-
term patents only by extrapolation.

Two other data sets also focused on invention
patents, one tallying the royalties received between
1977 and 1995 on 118 patent ‘‘bundles’’ covering
inventions made by Harvard University employees
and licensed by the Harvard Office of Technology
Licensing, the other analogous royalties received
during the years 1991 through 1995 on inventions
made at six research-oriented US universities. These
are called the ‘‘Harvard patents’’ and ‘‘six university
patents’’ in Table 1. The ‘‘Venture Economics star-
tups’’ and ‘‘Horsley–Keogh startups’’ samples in

ŽTable 1 evaluated the asset value appreciation or
.loss experienced on a total of 1053 investments in

startup companies by US venture capital firms bet-
ween 1969 and 1988. The ‘‘IPOs’’ sample measures
the appreciation of common stock values as of 1995
for 131 high-technology companies which made IPOs
between 1983 and 1986. Finally, we take advantage
of the data compiled and analyzed previously by

Ž .Grabowski and Vernon 1990; 1994 on the dis-
counted present value of quasi-rents realized on new
pharmaceutical entities marketed in the United States
— 98 of them introduced during the 1970s and 66
between 1980 and 1984.

In all cases, a relatively small number of top
entities were responsible for most of the total value
realized from the full cohort of innovations. The

highest concentration of value is found for the
patents, which tend to cover the narrowest range of
innovative subject matter. The fraction of total port-
folio value attributable to the top 10% of startup
business investments is quite similar for the two sets
of venture fund-backed companies and for the IPO

Žcompanies whose value gains occur at a later life
cycle stage, since venture funds typically liquidate
their positions shortly after the companies they have

.backed float IPOs . The least skewness is found for
the new drug entity samples, perhaps in part because
the samples include only products that had passed
through rigorous FDA approval regimens.

For the German patents, Harvard patents, IPOs,
and Grabowski–Vernon drug products, the data were
of sufficient richness that we could statistically test

Žalternative distribution form hypotheses see Harhoff
.et al., 1997; Scherer, 1998; Scherer et al., 1999 . For

all five samples, the best-fitting distribution was the
Žlog normal surpassing, e.g., Pareto–Levy, Weibull,

negative exponential, and Maddala–Singh alterna-
.tives . The Grabowski–Vernon drug distributions,

with the lowest fraction of value residing in the most
valuable 10% of observations, were discernibly less
skew than the log normal, but clearly more skew
than alternatives such as the Weibull. This finding
will be important at a subsequent stage of the argu-
ment.

3. Implications for R&D funding agencies

Our research reveals that the lion’s share of the
privately appropriated value through investments in
innovation comes from roughly 10% of the techni-
cally successful prospects. This is true for patents,
which typically cover quite narrow slices of technol-

Žogy, for discrete products i.e., new drug chemical
.entities , and for whole firms securing venture capi-

tal or new public issue financing. Our study of
high-technology startup firms’ stock market perfor-
mance over roughly 10 years reveals in addition that
it is difficult to predict in advance which of the
prospects considered attractive enough to warrant
investment will pay off most lucratively.

A further, less fully documented, step must be
taken to draw implications for technology policy, as
implemented by governmental organizations. None
of our data sets attempted to measure the social
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returns realized through technological innovation.
However, there is no reason to suppose that the size
distribution of payoffs from government research
andror development projects is qualitatively diffe-
rent from what we have observed for our samples of
private sector and university projects. Fragmentary
evidence suggests that the social returns from private
investments and the returns from government pro-
jects are similarly skew-distributed. Thus, one cannot
reject even at the 20% confidence level the hypothe-
sis that the social rates of return calculated by Mans-

Ž .field et al. 1977 on 16 private-sector innovations
were log-normally distributed. 2 Similarly, crude data
on the number of combat vehicles produced follow-
ing government R&D programs in the fighter air-
craft, bomber, and guided missile fields reveal a
skew distribution. 3 Thus, for the inferences made in
the next two paragraphs, we assume that the size
distributions of returns from government projects
have skewness properties similar to those we have
observed in our more thoroughly analyzed private
sector data sets.

Legislators and senior government leaders are
likely to view government technology programs in
which half the supported projects fail to yield appre-
ciable returns and only one in 10 succeeds hand-
somely as a rather poor track record when in fact, by
the standards of private sector markets, it is quite
normal. 4 Those who are responsible for the alloca-

2 One negative observation was excluded, leaving 16 useable
observations, whose distribution in the logarithms had a skewness
coefficient of 0.05 and a kurtosis coefficient of 2.53. The values
for a perfect log normal distribution would be 0 and 3.0, respec-
tively. For the 16 observations before logarithmic transformation,
the skewness coefficient was 1.83, which differs from normality at

Ž .the 0.01 significance level. Mansfield et al. 1977 estimated
internal rates of return rather than undiscounted or discounted
total returns, as in our samples. The distributions of internal rates
of return are intrinsically less skew than present values of absolute
payoffs, calculated at conventional discount rates, because the
polynomial deflation carried out to determine internal rates of
return tends to suppress very large values.

3 These estimates were made by co-author Scherer in a work
done for the US Department of Justice in opposition to a merger
between Lockheed–Martin and Northrop–Grumman.

4 We owe this insight to Arati Prabhakar, former director of
DARPA and then the US National Institute of Standards and
Technology, from a discussion at a US Department of Defense
Science Council meeting in 1993.

tion of financial resources to support the advance of
technology should adjust their expectations accor-
dingly. Similarly, researchers who seek to assess the
success of government technology programs should
focus most of their effort on measuring returns from
the relatively few projects with clearly superior pay-
offs, not on projects in the heavily populated low-
value distribution tail.

Our results also suggest the wisdom for techno-
logy policy in Mao Tse-Tung’s aphorism, ‘‘Let one
hundred flowers bloom’’ — implemented, to be
sure, with greater discrimination and consistency
than Chairman Mao exhibited in propagating his
Great Leap Forward. Among other things, techno-
logy policies that concentrate government subsidies
on a relatively few national champion enterprises
may fail through insufficient statistical diversity, even
Ž .if as is debatable leading firms embrace new tech-

nological opportunities as enthusiastically as their
smaller counterparts. 5 Rather, from our findings one
gains enhanced appreciation of the US venture fun-
ding system, under which private risk capital flows
each year to thousands of high-technology startup
companies in the hope that the returns from a hand-
ful will compensate, or more than compensate, the
investors. Most industrialized nations have been slow
in imitating that institution, which was almost surely
the principal basis of US success in high-technology
industries during the past decade. 6

4. The efficacy of portfolio strategies

All this suggests the need for both nations and
firms to pursue a portfolio approach to backing new
technology, recognizing that only a few of the pro-
jects supported will pay off on a large scale and
hoping that generous returns from the relatively few
successes will also cover the cost of the many less
successful projects. One should not, however, exag-
gerate the efficacy of portfolio strategies as a means

5 Ž . Ž .Compare Scherer 1992 and Christensen 1997 .
6 For a comparative analysis of various leading nations’ high-

Ž .technology venture systems, see US National Science Board 1998
Ž .pp. 6–30–33 . For a comparison of US and German systems, see

Ž .Kukies and Scherer 1998 .
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of hedging against the risks from investing in new
technologies.

We began our research hypothesizing provision-
ally, based upon fragmentary earlier evidence, that
the returns from investments in new technology ad-
hered to a Pareto–Levy distribution. Where V is the
value of profits from an innovation, N is the number
of cases with value V or greater, and k and a are
positive parameters, the simplest Pareto–Levy distri-
bution is characterized by the equation:

N V sk Vya .Ž .

The equation is linear in the logarithms, with a long
thin tail into the highest-value range of innovation
profits. The Pareto–Levy distribution has the un-
usual property that when a-1, the weak law of
large numbers fails to hold, so that neither the distri-
bution’s mean nor its variance is asymptotically fi-
nite. What this means in practical terms is that as one
draws ever larger samples, there is an increasing
probability that some extremely large observation
will materialize, causing both the mean and the
variance to explode upward rather than converging
toward stable values. This in turn implies that it is
difficult or impossible to achieve stable mean expec-
tations and hence hedge against risk by supporting
sizeable portfolios of projects.

Our research failed for the most part to support
the Paretian hypothesis, pointing instead toward log
normal distributions with better-behaved large-sam-
ple properties. That is good news for the users of
portfolio strategies. However, the log normal distri-
butions we observed were themselves quite skew and
indeed hard to distinguish statistically in their ex-
treme-value tails from Paretian distributions. As such,
attempts to achieve stable mean returns through fea-
sible portfolio strategies are likely to yield at best
middling success.

To demonstrate this point, we report on a series of
Monte Carlo experiments using the Grabowski–
Vernon quasi-rent data for 98 new drugs that cleared
FDA regulatory hurdles and were introduced into the
US market during the 1970s. The distribution of
1970s drug quasi-rents, we recall from Table 1, was
the second-to-least skew of any of the distributions
on which we obtained data, and thus it provides a

relatively optimistic test of the problems that attend
portfolio strategies.

Each individual quasi-rent observation in the
Grabowski–Vernon data set was replicated 10 times,

Ž .and the observations were stored in a figurative
computer urn, where their order was randomized.
From supplementary data that underlay the
Grabowski–Vernon quasi-rent estimates, it was as-
sumed that the typical drug has a rent-earning life of
21 years following its introduction into the market.
The rents for any given drug were assumed to be
distributed triangularly over time, with peak rent-
earning at year 10. During the period for which the
Grabowski–Vernon data were collected, an average
of 18 new drug chemical entities per year were
approved by the FDA and introduced into the US
market. Thus, for each year over a total of 70 years,
18 new drugs were drawn randomly from the com-
puter urn. For each drug so drawn, its quasi-rents
were spread over 21 years. When the sampling was
completed, the quasi-rents of all drugs on the market

Žin any given year i.e., 18 drugs per year times 21
.yearss378 rent-earning drugs were summed. Be-

cause they included incomplete numbers of drugs,
the totals for the first and last 20 years were deleted
from the sample, leaving quasi-rent totals for 30
years, each year’s total comprising the moving sum
of 378 observations. After further randomizations,
the experiment was repeated over a total of seven
complete runs.

The results are summarized in Figs. 2 and 3. For
all years and all simulations combined, mean annual

Fig. 2. Plot of drug industry profit simulations, runs 1, 2, and 3.
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Fig. 3. Plot of drug industry profit simulations, runs 4, 5, 6, and 7.

quasi-rents amounted to US$2.07 billion. Total
quasi-rents varied widely from year to year, how-

Ž .ever, from a minimum of US$1.55 billion in run 7
Ž .to a maximum of US$2.57 billion in run 5 , with an

average year-to-year standard deviation of US$168
million. Inspecting any given run’s quasi-rent fluc-
tuations without knowing that they were generated
by a random sampling process, one might infer that
they reveal systematic ‘‘cycles’’ quite like the cycles
actually observed in total US drug industry prof-
itability. But this would be wrong. Rather, the year-
to-year and sample-to-sample variability is typical of
what happens when one draws relatively large sam-
ples of individual values that are skew-distributed.

The annual quasi-rent totals presented in Figs. 2
and 3 stem from a methodology that in effect covers
all the new products on the US market in any given
year over the products’ life cycles. Thus, they reflect
portfolio averaging at the whole pharmaceutical in-
dustry level. Even with a skew log normal distribu-
tion, it remains true that the more observations over
which one samples, the more stable the year-to-year

Ž .averages or totals are. Thus, recent mergers among
pharmaceutical companies, motivated in part by a
desire to create larger portfolios spreading the risks
of individual R&D project investments, undoubtedly
do reduce the year-to-year variability of outcomes.
But even at the extreme of merging the entire indus-
try into one hypothetical firm, year-to-year standard
deviations equal to roughly 8% of industry quasi-rent
totals remain. For individual firms much smaller than
the pharmaceutical industry aggregate, substantially
larger year-to-year variations cannot be escaped

through portfolio strategies. 7 Thus, given skew-dis-
tributed outcomes, appreciable risk-taking cannot be
avoided. And in judging the innovative performance
of individual firms, a long time perspective is essen-
tial, since short-run returns can be dominated by
particularly favorable or unfavorable draws from a
skew distribution.

5. Macroeconomic implications

The drug quasi-rent distribution used as the basis
for our Monte Carlo analysis was, to reiterate again,
less skew than all but one of the distributions sum-
marized in Table 1. For the other more skew distri-
butions, one would expect even more instability of
means and totals for relatively large samples — e.g.,
extending to the whole-industry level. This raises the
question, might the skewness of innovation outcome
distributions contribute instability even when the in-
dividual effects are aggregated up to the level of a
whole economy? In other words, might the real

Žbusiness cycles more accurately, business fluctua-
.tions to which macroeconomists have called atten-

tion be attributable in part to randomness in draws
from a skew-distributed universe of innovative op-
portunities? A Monte Carlo experiment by Nordhaus
Ž .1989 suggests that they may be. He postulated that
99.99% of the tens of thousands of invention patents
issued each year are worthless, but that the remain-

Ž .ing 0.01% i.e., three to eight inventions per year
have high values adhering to a Pareto distribution
with a fairly conservative a coefficient of 1.3. The
effects of those valuable inventions were assumed to
seep into the economy slowly but persist indefinitely.
Making random draws from his Pareto distribution
and aggregating the effects, Nordhaus simulated
year-to-year fluctuations in economy-wide productiv-
ity growth ranging from 0.5% to 3.5% per year in a
seemingly cyclical pattern resembling the productiv-
ity growth fluctuations actually experienced by the
US economy over the years 1900 through 1988.

7 Thus, for a drug firm one-fifth the size of the total industry,
Ž .the year-to-year standard deviation assuming log normality would

be on the order of 18%; for a firm one-tenth the size of the
industry approximately 25%.
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We had contemplated performing a similar analy-
sis using our much richer data, but concluded that
the additional assumptions required would over-
whelm the empirical observations per se and there-
fore that the results would be too assumption-depen-
dent to provide reliable insights. There were three
problem clusters.

First, our data are uniformly for private economic
values, whereas a proper macroeconomic analysis
requires the use of social returns to innovation,
taking into account unappropriated benefits and other
externalities, not merely private returns. The transla-
tion from private to social returns must have large
but poorly understood stochastic components. 8

Second, our patented invention samples are li-
mited to a single year’s cohort, and hence may not
have captured the most extreme private values. And
for the US sample, the survey elicited value esti-
mates only for discrete categories, including an
open-ended category of US$100 million and more.
We know from telephone interviews with respon-
dents that some of the 18 estimates in the highest
category were valued at more than US$1 billion, but
the evidence is too incomplete to support a confident
extrapolation. Assuming the categorical data to be
Pareto-distributed and extrapolating linearly from the
fitted US patent size distribution to the extreme tail,
one finds the most valuable invention in our sample

Žto have a private value of US$90 billion see Harhoff
.et al., 1997 . But given the more complete evidence

from other samples, it is unlikely that the log linear-
ity associated with a Pareto distribution persists into
the extreme tail, and so the validity of this extrapola-
tion is dubious. 9 If one ignores that hazard, crude

8 The most relevant analysis, focusing on internal rates of
return rather than absolute magnitudes, is by Mansfield et al.
Ž . Ž .1977 . The simple Piersonian correlation between their social
and private rate of return estimates for 17 innovations was q0.47.

9 To be sure, innovations with social payoffs of that magnitude
Ž .e.g., 3.2% of 1980 US GDP undoubtedly exist. Probable exam-
ples include Alexander Graham Bell’s telephone, Edison’s electric

Ž .light see Nordhaus, 1997 , the Otto internal combustion engine,
television, integrated circuits and microprocessors, and the Co-

Žhen–Boyer gene splicing inventions whose three patents are
included in our six universities sample, yielding US$75 million in
royalties from numerous non-exclusive licenses during 1991–

.1994 . Most of these innovations were covered by multiple patents,
some competing and some complementary.

simulations imposing minimal structure on the data
reveal sufficient skewness to generate macroeco-
nomic fluctuations of appreciable magnitude.

Third, too little is known about the detailed struc-
ture of individual innovations’ macroeconomic ef-
fects. For any given innovation value, longer lag
structures will produce smoother effects than short
lags; Koyck-type lags will impart sharper fluctua-
tions than, e.g., lag effects distributed in a bell-curve
pattern over time. 10 Major innovations can generate
positive multiplier effects, and reverse causality can
also intrude as macroeconomic swings induce de-

Žmand-pull effects on the supply of innovations see
.Schmookler, 1966 . Interactions among individual

inventions also cannot be ignored. Simulation analy-
ses suggest, for example, that both complementari-
ties and competitive interactions among inventions
with Pareto-distributed individual values lead to re-
vised value distributions that are less skew than
Pareto.

Given these difficulties, we chose not to attempt a
full-scale Monte Carlo analysis of macroeconomic
implications. The most that can be said is that the
skew distribution of innovation values could in prin-
ciple lead to noticeable macroeconomic fluctuations,
and that must remain a tantalizing hypothesis for
future research.

6. Conclusions

Our empirical research reveals at a high level of
confidence that the size distribution of private value
returns from individual technological innovations is
quite skew — most likely adhering to a log normal
law. A small minority of innovations yield the lion’s
share of all innovations’ total economic value. This
implies difficulty in averting risk through portfolio
strategies and in assessing individual organizations’
innovative track records. Assuming similar degrees
of skewness in the returns from projects undertaken
under government sponsorship, public sector pro-
grams seeking to support major technological ad-
vances must strive to let many flowers bloom. The
skewness of innovative returns almost surely persists

10 Ž .See e.g., Ravenscraft and Scherer 1982 .
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to add instability to the profit returns of whole
industries and may extend even up to the macroeco-
nomic level. Although much remains to be learned,
some important lessons for technology policy have
begun to emerge.
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